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Abstract—Fast-paced data-to-decision systems are heavily de-
pendent on the reliable sharing of sensor-derived information.
At the same time a diverse collection of sensory information
providers would want to exercise control over the information
shared based on their perception of the risk of possible misuse
due to sharing and also depending on the consumer requirements.
To attain this utility vs. risk trade-off, information is subjected
to varying but deliberate quality modifying transformations
which we term as obfuscation. In this paper, treating privacy
as the primary motivation for information control, we highlight
initial considerations of using feature sharing as an obfuscation
mechanism to control the inferences possible from shared sensory
data. We provide results from an activity tracking scenario to
illustrate the use of feature selection in identifying the various
trade-off points.

Index Terms—Privacy, Value of Information, Utility, Feature
Sharing, Mutual Information

I. INTRODUCTION

We observe our physical world to gain an understanding of
it, to draw informed decisions and drive effective actions. For
example, we may observe vehicles to infer driving patterns and
to improve commute times. We may collect intelligence (from
both hard and soft sensors) about people, asset concentration
and movement patterns to draw inferences about eminent
hostile actions and prepare against. We may collect vital signs
to monitor human activities and conditions to provide remote
healthcare, or to conclude about the effectiveness of a drug
therapy. In addition to the reasons “declared” (maybe as part
of a sharing contract) for collecting observations, these could
be used to identify and locate a person and learn about his
lifestyle, or localize the sensory resources and their capabilities
owned by a military coalition partner unwilling to share this
information.

All the above are examples of data-to-decision systems
and applications that exploit the collective power of an ever
increasing corpus of low-cost sensors deployed by “us” or
“others.” These systems and applications collect and intelli-
gently distribute the sensory information, or the outcome and
its processing, to the proper edge elements that are in need
of the aforementioned understanding of the world to make
decisions and take actions.

Sensory information possesses innate properties (e.g., ac-
curacy, latency, provenance), summarily referred to as quality
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of information (QoI), that result from the sensing and com-
munication operations and, also, carries value (VoI value of
information) that depends on its use and user context [1].
In addition, information may carry value for its provider as
well, such as sharing it for monetary benefit, for mitigating
congestion, for aiding a military coalition partner execute its
task better, for contributing to medical research for curing a
specific disease and so on.

Therefore, it is natural to expect that a provider may seek
to exercise control over the information shared. This could
be aimed towards protecting aspects of his information pro-
ducing infrastructure from being revealed, such as its sensing
capabilities, sensor locations, etc., that differentiate him from
other providers; or simply to protect certain inferences from
being revealed to the information consumer. Such revealing
could be possible by correlating the shared information with
additional information available to the consumer, such as
correlating tracking information about an object received from
the provider with independently obtained information about
the object’s track to infer about the capabilities of the provider.
Due to the concerns associated with the value that the shared
information has on its provider, we will refer to this value as
the risk of information (RoI).

The QoI, VoI and RoI are aspects associated to an infor-
mation product that can be traded-off to achieve a balance
between the utility gained by the information consumers and
risk experienced by the information providers. We will refer
to as obfuscation any information processing done deliberately
by the provider with the objective to attain this balance. QoI in
this case plays the role of a catalyst whose increase or decrease
affects consumer utility and provider risk. Fig. 1 illustrates this
point showing a piece of information of a given quality level
(QoI) and corresponding value (VoI) to a consumer. However,
this information carries risks to the provider due to unintended
uses of it by the consumer. The provider will make judicious
use of obfuscation to continue providing value to the consumer
while containing its own risk.

Traditionally associated to privacy, in this paper, we present
an early investigation of a broader view of obfuscation as a
means to manage inferences from sensory information that
providers share with consumers. With a piece of information
having many uses, hence, being of varying value in different
use contexts, we take an approach of applying obfuscation at
appropriate representations of information, e.g., obfuscating a
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Fig. 1. Using QoI to balance the RoI of the provider and VoI of the consumer.

select set of features of a signal. The selection of the informa-
tion representation and obfuscation seeks to steer inferences
that consumers can make towards a white-list of inferences
that carry low risk to the provider and away from a black-list
of high-risk inferences, to simultaneously provide utility to the
consumer while lowering provider risk. The paper builds on
our the earlier short paper1 [2] where we highlighted for the
first time the interplay between QoI, RoI, VoI and the role that
obfuscation has in balancing between QoI and RoI via QoI.
We also introduced the activity tracker example case as a mean
to demonstrate the use of black and white list of inferences
for driving obfuscation using features of sensory signal. In this
paper, we further expand upon these concepts and, in addition,
we introduce a number of design alternatives for building an
obfuscation framework residing at different points on the path
between an information provider and consumer. We use these
alternatives to argue the benefits in building the framework
based on manipulating features of sensory signals. Finally, we
introduce a number of system level architectures for building
the obfuscation framework. We highlight the pros and cons
in building the framework for a networked system of mobile
users by placing the obfuscation functionality at various places
from a user device to the cloud, or in between.

The rest of the paper is organized as follows. In Section II,
we motivate the use of inferences as the “currency” for
expressing the risk vs. value tradeoff problem. The possi-
ble obfuscation choice and operating points are discussed
in Section III. An obfuscation framework implementing the
obfuscation strategy is discussed in Section IV. Depending
on the different data flow scenarios between providers and
consumers (or applications requesting data), the placement
of the obfuscation framework could vary. These choices are
analysed in Section V. Related work is summarized in Sec-
tion VI. The feature sharing approach similar to one presented
in [2] is shown in Section VII and we demonstrate its efficacy
using an example activity tracking scenario in Section VIII. A
discussion on the approach and future directions is presented
in Section IX.

1http://nesl.ee.ucla.edu/document/show/408

II. FEATURES AND INFERENCES

In this section, we use information privacy as the pri-
mary motivation for information control and outline various
elements of a feature sharing strategy as an obfuscation
mechanism.

A. Using Inferences as Primitives

We define an inference as an estimate of the current be-
havioral state of a provider. For example, a person can be
either smoking or not smoking. An inference function would
use sensory data to estimate the current state of the provider.
If the provider wants to keep his smoking habit private then
the scheme should transform the data to prevent the consumer
from accurately estimating the smoking states of the provider.

From a consumer’s perspective, the shared data is useful
for drawing various inferences. From a provider’s perspective,
on the other hand, some of these inferences are acceptable,
mutually agreed upon and contribute to consumer’s utility
whereas others are more private and contribute to overall
risk [3]. Traditionally, obfuscation mechanisms are focussed
on reducing a specific form of provider risk, one which arises
from disclosure of private information. The implementation of
these mechanisms include addition of structured noise to the
data for reducing the QoI. The RoI is derived in terms of the
reconstruction error of the original signal from the obfuscated
data [4], [5]. However, these mechanisms overlook the fact that
many of the private inferences can be drawn just as accurately
from partially reconstructed signals or ones with low signal-to-
noise ratio [6]. In other words, we posit that it is the inference
quality and not the signal quality that should be the privacy
metric to focus on.

B. Problem Definition

With the above insight, we consider the use of inference
functions as the natural basis for expressing the utility and
privacy requirements of a provider. We postulate the existence
of a universe of computable inferences. A provider shares data
such that the consumer is able to compute sufficiently well
a subset of inferences from this universal set – maintaining
utility. At the same time, the provider wants to protect a
disjoint subset of inferences from being computed using the
same data – reducing risk. We call the former subset the
white list and the latter one the black list. Consideration
for possible “gray lists” is left for future time. Armed with
the white and black lists of inference functions, which are
expected to be personalized, recipient-specific and context-
dependent, the goal is to systematically design an obfuscation
mechanism and evaluate whether sharing some data can be
potentially divulging of private inferences incurring risk while
simultaneously meeting the utility objective.

III. POSSIBLE CHOICES OF OBFUSCATION

Information entering a data flow pipeline from providers to
consumers is summarized into various forms at different stages
of the pipeline. Initially, it exists as raw samples collected from
sensors. Subsequently, features are extracted from the raw
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Fig. 2. Possible operating points of an obfuscation mechanism within a data flow pipeline from providers to consumers.

samples. Finally, the features are used by various algorithms
to draw inferences which are used by the consumers. In such
a pipeline as shown in Fig. 2, a QoI reducing obfuscation
mechanism can operate at different points. Below we outline
the possible options.

Access Control: Access control can occur at any of the three
points in the pipeline. The provider is presented with a binary
option of either allowing or denying access to the consumer on
the requested information. Depending on the operating point,
when granted permission, the consumer can access either
raw data, features or inferences at the highest resolution and
could maliciously use it for drawing unintended inferences.
Thus, using access control the provider has two options –
either to fully trust the consumer, or not trust at all. For
example, current privacy practices for mobile phones mandate
that an application during its installation declare the resources
(e.g. raw sensory data) it needs access to. For instance, the
manifest file on an Android based mobile system is one such
enforcing mechanism. The privacy framework implements a
policing mechanism to ensure that undeclared resources are
never accessed. However, the consumer has complete access
on resources for which permission has been granted. While
fine-grained access control has been proposed in [7], [8],
for a given access policy either utility or privacy is fully
compromised.

Perturb Raw Data: The next logical step is to apply data
transformations such as perturbation, suppression, generaliza-
tion [9] on the raw data to change its “resolution” before shar-
ing. For example, one could add noise drawn from a Gaussian
distribution while preserving the statistical properties of the
data. Other alternatives include adding structured noise [10]
to selectively effect data features to simultaneously maintain
both utility and privacy goals. The above strategy allows us
to overcome the drawbacks of using a binary strategy as data
could now be shared at different resolutions providing better
control. The risk guarantee of a perturbation scheme is pro-
vided in terms of the reconstruction possibility of the original
signal [11], [4], [10] from the perturbed data. However, a
weakness of this strategy is that many private inferences could
be made just as accurately with a lower signal-to-noise ratio
– a problem not addressed by the reconstruction metric of
privacy.

Feature Selection and Perturbation: Without an explicit
notion of what constitutes a private inference it is difficult

to devise perturbation techniques to protect against them. We
posit that using inferences as the basic primitive applications
and users should provide their white and black lists of utility
and privacy preferences. An inference is typically computed
using features such as mean, variance, FFT coefficients which
are extracted from raw data. A natural alternative that emerges
from the above analysis is to only share the features such
that only the mutual information [12] with the white listed
inferences is preserved and not the raw data – i.e. perform
feature selection and feature suppression before sharing. While
raw data could suffer from the curse of higher dimensionality
and susceptibility to inference attacks [13] the process of
feature extraction is dimensionality reducing [14], [15] and
extracted features allows efficient computation of inferences
(e.g. clustering, linear classifiers). In addition, sharing features
allows better control over the amount of information that is
being shared and lower the risk.

However, the disjoint white and black list inferences could
have overlapping features. Therefore, we augment feature
sharing with an additional step of feature perturbation, where
we perturb the common features such that the black list
inference quality is significantly degraded while maintaining
the white list accuracy. However, there exists two caveats
to this approach. First, it assumes that there exists prior
knowledge regarding the mapping between inferences and the
features they use. This can be justified through the observation
that there are typical features that are used for drawing
inferences from sensors commonly found on mobile devices.
To illustrate, inferences from accelerometer data typically uses
first-order statistics such as mean, variance or statistics over
FFT coefficients. Second, applications need to be modified to
work with features instead of raw data. This could be the cost
of achieving better privacy as compared to sharing raw data.

Sharing Inferences: At the other extreme, the provider could
locally compute all the inferences and share only a subset
of obfuscated inferences. The problem with this approach is
that the provider can at times be constrained in terms of
both energy and computational resources. In addition, the
algorithms used by the consumer for the inferences could be
proprietary, therefore sharing them with the provider can be
difficult.



IV. OBFUSCATION FRAMEWORK

We will use a somewhat elementary data-to-decision exem-
plar to communicate the main thesis of our research that of a
system-level obfuscation framework. Specifically, imagine an
activity tracker smartphone app that uses the accelerometer
to track the activity level of the user during a day. From a
decision side, this information could be used, for example, to
adjust the environmental (temperature, humidity, ambient light,
music level,etc.) in the persons living quarters. Privacy and
security measures available today mandate that applications
declare what sensors they require during installation (or use)
and a system framework provides a policing mechanism to
ensure that undeclared resources are not accessed. However,
suppose that the app developer maliciously included algo-
rithms that also infer the type of a user’s activity (sitting,
sleeping, walking, running [16]) from the same accelerometer
data. Since the system provides the app with raw accelerometer
data, both system and user are oblivious to the true behavior
of this application. In today’s mobile platforms, users must
either fully trust the application or choose to not use it at
all. Unfortunately, as users become increasingly aware of the
privacy risks associated with seemingly innocent apps, their
negative decision stifles the adoption of the legitimate apps [3].

We propose that the system framework be augmented with
an obfuscation framework. This is the core privacy-enabling
layer that shapes sensor data and features extracted from
sensor data before releasing it to applications that request it.
The obfuscation framework is configured with a user-specified
black list of inferences and only allows applications to access
data to compute a set of declared and user-approved white list
inferences. So, for example, the activity tracker may request
accelerometer data from the system, but must specify that it
intends to use it for determining user activity level to compute
the total activity level. The obfuscation framework then allows
features of the data that correspond to activity level (e.g.
signal variance) to pass through, but blocks features relevant
for inferring activity type (e.g. energy in specific frequency
bins). We defer a more detailed handling of this application
to Section VIII.

It must be emphasized that the obfuscation framework can-
not guarantee absolute privacy, that is, against the unknown.
Like its network counterpart, the obfuscation framework can
only be as effective as its configuration. If an inference
is not specified in the black list, or an inference function
is incorrectly specified with respect to its features or its
sensitivity to features, the obfuscation framework may fail. We
introduce the notion of an obfuscation framework to express
user privacy concerns in a coherent and general manner and
provide a systematic analysis of the requirements of such a
module within the sensing stack.

V. INTERACTION SCENARIOS

We start by describing our view of a mobile system used
to collect and share sensory data. In Fig. 3(a), we show the
system architecture of the Android mobile platform [17]. We
combine the functionalities of the layers containing the Linux

kernel, system libraries, Android runtime and the application
framework, abstract it into a single block and call it the mobile
platform. Applications running on the phone form part of the
topmost layer. This view is shown in Fig. 3(b). Thus, data from
various sensors are made available to the applications which
are also the data consumers by the mobile platform in the
middle. We assume that all the software components forming
the mobile platform are trusted whereas the application layer
(with third-party apps) is not trusted.

Using the above system view, Fig. 4 parts (a), (b) and (c)
illustrate the interactions and the possible ways in which data
flow can occur between the provider and the consumers. The
mobile platform in the figure is demarcated by the dotted box.

• Local: Fig. 4(a) shows an untrusted application (app1)
which runs locally on the mobile platform itself. It
requires access to one or more sensors for providing its
service. Since, the application is not trusted, the user
would want to ensure that it is not able to make any
of the blacklisted inferences using the provided data.

• Direct-Cloud-Hosted: Fig. 4(b) shows an application
client which runs on the mobile system, but relies on a
cloud-hosted server for making the inferences. The client
collects data streams from various sensors and uploads
them to the server. Inferences made at the server are then
sent back to the client and the user.

• Broker-Cloud-Hosted: In Fig. 4(c), the interaction be-
tween the mobile system and the applications occurs
through a trusted broker. A trusted broker is a server
which is either owned by the user, or by a trusted third-
party. User uploads data to the broker which in turn
provides it to the cloud-hosted application for obtaining
the desired service. Services such as [7], [18], [19] follow
the trusted broker model.

Depending on the type of interaction the placement of the
obfuscation framework could vary. In part (a), the framework
needs to be placed between the mobile platform and the
applications. Data streams passing through the framework
layer are adequately transformed before they are handed over
to the untrusted application. In part (b), the framework can
be included into the client implementation in the application
layer. While this would eliminate the need to make system
level changes as required for part (a), it would involve
modification of the code base for different clients. However,
some of the changes can be application specific resulting
in significant duplication of effort across multiple clients. In
addition, the modified client code should be trusted and not
leak information. In part (c) we could push the obfuscation
framework to the trusted broker. This would eliminate the
need for changes at both the application client as well as
the system level. However, as mentioned above, these would
be point solutions needing replication for all such brokers.
Therefore, an additional layer as part of the trusted mobile
architecture itself is the most effective way of implementing
the obfuscation framework.
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VI. RELATED WORK

While privacy challenges of sharing sensory data have been
relatively less explored, there is a large body of work which
addresses privacy concerns during disclosure of relational data
from databases. We broadly categorize them into four cate-
gories. First, there is work that explores system architecture
mechanisms for providing the source greater control over
data dissemination, and includes systems such as PDV [7]
and Locaccino [18] for sensor data, and others such as
Virtual Individual Servers [20], Lockr [19], Persona [21] and
Microsoft Health Vault [22] for more generic data records.
Most of these provide relatively coarse-grained access control
and limited conditioning of access upon context such as users
location, activity, and behavior. However, the binary nature of
access control mechanisms prevents one from achieving the
utility aspect of the sharing problem. Second, there is work
in the statistical database community that seeks to provide
anonymity for an individual user by combining data from
multiple users to achieve privacy measured by metrics such as
k-anonymity [23], l-diversity [24], and t-closeness [25] using
mechanisms such as perturbation, suppression, generalization
etc. [9]. Recently, differential privacy [26] has emerged as a
principled way of perturbing responses to statistical queries
issued on databases. Protecting user identity is the main
objective of these approaches, however, in most of our example
scenarios we assume that the user identity is part of the shared
data. In addition, all these approaches adopt a “privacy-first”
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policy and provide no explicit mechanism for expressing or
achieving a desired utility objective. Third category comprises
of recent advances in cryptography, particularly homomorphic
encryption [27], which while not yet efficient in its full
variant, can still be used in limited forms for processing sensor
data by cloud-based intermediary services that are not fully
trusted. Finally, and most related to our work are approaches
that transform sensor data before sharing so as to provide
privacy while preserving its utility, such as in [4], [11]. While
offering point examples, these works do not provide a general
approach and system architecture as we do. Moreover, the
formulation of privacy and utility in current works is typically
in terms of recipient’s inability [4] and ability [11] respectively
to reconstruct the signal, which is a very limiting concept
compared to our inference-based approach.

VII. REALIZATION OF AN OBFUSCATION MECHANISM

Determining the optimal set of features to share forms
the crux of the solution approach. Intuitively, the selected
subset of features should allow accurate computation of white
listed inferences and contain no information for computing
the black listed inferences. This motivates the use of mutual
information between the features and inferences as a selection
metric. The optimization problem therefore is to select a
subset of features such that the mutual information with
the white listed inferences is maximized and that with the
black listed inferences is simultaneously minimized. Ideally,
if the joint distribution between a finite set of features and
inferences is known, we can use it to evaluate the mutual
information between all possible combinations of features and
inferences and select one which satisfies the optimization
criterion. However, there are two problems with this ideal
scenario. First, it is hard to compute the joint distribution
because of inadequate training data. Second, evaluating over



all possible feature combinations could be of exponential
complexity. To address the first issue, we are guided by Fano’s
inequality [12] and use misclassification as an approximation
to the mutual information. However, the limitation of this is
that the privacy guarantee is for the state-of-the-art inference
algorithm used for classification. We are currently working on
a suitable heuristic for selecting the right subsets of features
to evaluate misclassification against. Finally, after evaluation
if the subset of features selected is completely disjoint from
the features required by the black listed inference we call it
feature selection. If there exists an overlap, we pass it through
a feature perturbation block to further increase the black list
misclassification error while maintaining the misclassification
for the white list before sharing.

Figure 5 shows two applications that use different features
(top row of the mapping block) for their respective white
and black list configurations. Both applications black list
inferences I4, I5 and I6 (bottom row of the mapping block)
and could therefore strip the data of features F4, F5 and F6.
For the application on the right, choosing to share features F1

and F2 is adequate to compute the white list inferences I1
and I2. However, for the application on the left, feature F3

is used in the black listed inference I4 and the white listed
inference I3. In order to meet utility and privacy requirements
the system shares a perturbed version of F3: F3p. Since I3
also uses features F1 and F2, which are shared unmodified, the
utility of inference I3 may not degrade substantially because
of the perturbed feature F3p. Whereas, since the inference I4
needs F3, F4, and F5, the latter two of which were removed
from the data, the black listed inference I4 only has F3p to
its disposal. The degree to which an inference is degraded
because of feature perturbation depends on the sensitivity of
the inference to the feature and the form of perturbation being
applied.

VIII. ACTIVITY TRACKING APPLICATION

It is well known that activities can be inferred from ac-
celerometer data [16], [28]. But, there are several privacy
concerns that could arise. First, depending on current context
(e.g., location) a user might not be comfortable sharing his ac-
tivity with a third party application [3]. Second, from a record
of activity across long time scales, one can model sensitive
behavioral patterns [29]. Consider a simple application which
tracks the intervals of time during which a person is active.
One can imagine that this application polls the accelerometer
to infer the level of activity (either active or inactive) over
a short period of time. The idea here is to permit activity
detection (the white list) and prohibit activity classification
(the black list). Activity classification refers to a set of specific
activities (e.g., walking, running, cycling) a user would like
to restrict, so as to prevent behavioral mining. We use this
application to illustrate the described feature sharing approach.
Inferences from accelerometer data typically work on a set
of simple features extracted from the waveform. If we can
establish the set of features that can be used to perform activity
classification, then the feature selection technique described

0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Accuracy of activity−level

A
c
c
u

ra
c
y
 o

f 
a

c
ti
v
it
y
−

ty
p

e

 

 

Hip Sensor

Thigh Sensor

<Entropy of FFT>
acc−level = 0.75
acc−type = 0.18

Fig. 6. Characterizing utility vs. privacy in terms of classification accuracies
for various combination of features.

in Section II can be used to preserve privacy. There are
various ways to establish this mapping between features and
inferences. One possible approach is to use machine learning
to train an activity classifier based on a set of features. If
we do this exhaustively for every combination of features
this empirically establishes which sets of features can classify
activity with high accuracy.

To test our approach, we have used an annotated accelera-
tion dataset collected under controlled condition from 20 indi-
viduals [28]. Accelerometers were positioned on the the hips
and thighs of the individuals and 20 everyday activities were
considered as possible inferences. These activities include reg-
ular tasks like walking and running, but also relatively inactive
tasks such as relaxing and standing still. This way, each of
the 20 activities can be mapped to active or inactive, giving
us annotations for both the white listed activity detection as
well as the black listed activity recognition. We implemented
five features extracted from accelerometer readings: mean,
variance, correlation between the axes (considering only two
axes), entropy of FFT coefficients and energy of FFT coeffi-
cients. For each set of features we learn a cross-validated C4.5
decision tree and use it to evaluate the accuracy of activity
classification for that set [16]. We can use the same method
to evaluate the accuracy for activity detection. This allows
us to characterize the privacy vs. utility trade-off in terms of
classification accuracies.

We interpret the complement of the activity recognition
accuracy as privacy. Similarly, the activity detection accuracy
is interpreted as utility. Thus, we can characterize a particular
choice of feature combination as a privacy vs. utility trade-
off point. Fig. 6 visualizes the various trade-off choices. For
example, the circled point at the lower left corner means that
75% of the time the entropy of FFT coefficients feature can be
used to correctly identify the activity level and only 18% of
time identify the actual activity. Clearly, given the results in
the figure, it would be desirable to operate at this point, which
corresponds to high enough accuracy in the activity level and
low accuracy in detecting activity type.



IX. DISCUSSION AND FUTURE WORK

Data-to-decision solutions will involve a multitude of sen-
sory information providers, processors and consumers. Bal-
ancing value gained by sharing desired information with the
risk from unintended uses of (or, inferences made with) this
information will be a significant contributor to the effective
deployment and operation of multiparty data-to-decision solu-
tions.

In this paper, we have argued on the role that we expect
obfuscation to play in enabling this balance. Specifically, con-
sidering the risk in privacy in the context of a sensor-enabled
remote activity tracking application as an exemplar use case,
we have argued that inference functions are the common
ground through which providers can coherently communicate
with the sensory information sources in mobile devices to
express privacy concerns. In addition, we propose that mobile
platforms should incorporate finer-grained access to sensor
data by exploiting knowledge of common features that could
be extracted from the data. This enables better presentation
of intent, in the sense that when applications or consumers
specify the set of useful inferences, they indirectly point to a
set of features that need to be shared for those inferences to
be made successfully.

In the simplest case, where an application requests features
that do not reveal much about blacklisted inferences, the
obfuscation framework can directly share those features. At
the other extreme, when the requested features have some
potential for drawing the blacklisted inferences a strategy of
feature suppression, where only select features of the full
requested set are shared, works. More realistically, however,
are scenarios where the features from the white and black
listed inferences overlap. The topic of this section is a more
systematic, though as yet not fully developed approach that
uses random projections as a proxy for features to resolve this
issue.

A. Random Projections; Privacy-First

The approaches to inference privacy described insofar have
two practical drawbacks. First, it is assumed that the obfus-
cation framework has complete knowledge of the mapping
between inferences and features. It is through this mapping
configuration that the obfuscation framework can ensure both
privacy and utility. Second, the obfuscation framework cannot
guard against privacy attacks from an arbitrary classifier, that
is, for which the inference function is unknown. It is arguable
that a malicious entity may be able to learn a different and
undisclosed model and may use features not yet configured in
the obfuscation framework.

Viewing inference privacy from a privacy-first angle, we
propose sharing projections of the features instead of the
features themselves [30]. That is, we transform the features
to another space before sharing. Now, to ensure that privacy
is maintained the transformation is kept private and is known
only to the data provider. In order to meet the utility goals,
the data provider only furnishes training labels so that the
data consumer can learn a model of the inference from these

projected features and labels rather than use a pre-built model
function on the features directly. For this to work, however, the
key property of the transformation that needs to be established
is that of preserving pair-wise distances between points in the
original feature space and the projected feature space.

Fortunately, when the transformation is derived from ran-
domly generated basis vectors drawn from an i.i.d. normal
distribution, the Johnson Lindenstrauss lemma states this prop-
erty holds with high probability when the dimensionality of
the new projected feature space satisfies a size constraint [31].
Thus, what was inferable via linear methods in the original fea-
ture space will still be inferable from these random projections.
Furthermore, any inferences that can be drawn are limited to
those for which the user provides ground truth training labels.
In effect, the burden is placed on the application to learn a
model from these random projections with the user-provided
ground truth as labels.

This approach eliminates the drawbacks of the previous
ones, but introduces some practical considerations of its own.
The primary concern is that the application now must learn
a model, local to the device. This may place a significant
burden on the application. On the other hand, we can guarantee
privacy when there is no side information, because the only
inference that can be learned from the randomly projected
features are ones explicitly trained for. It is worth noting that
since the random transformation is never shared with any party,
the dimensionality of the projected space can be arbitrarily
large without fear of leakage from inversion attacks.

We hope a more thorough exploration of this type of ap-
proach will lead to a better theoretical foundation for providing
inference privacy.

ACKNOWLEDGEMENT

This research was sponsored by the U.S. Army Research
Laboratory and the U.K. Ministry of Defense under Agreement
Number W911NF-06-3-0001 and by the NSF under award
#0910706. The views and conclusions contained in this docu-
ment are those of the author(s) and should not be interpreted as
representing the official policies, either expressed or implied,
of the U.S. Army Research Laboratory, the U.S. Government,
the U.K. Ministry of Defense or the U.K. Government or
the NSF. The U.S. and U.K. Governments are authorized to
reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation hereon.

REFERENCES

[1] C. Bisdikian, L. Kaplan, M. Srivastava, D. Thornley, D. Verma, and
R. Young, “Building principles for a quality of information specification
for sensor information,” in 12th Int’l Conf. on Information Fusion
(FUSION’09), 2009.

[2] S. Chakraborty, K. R. Raghavan, M. Srivastava, C. Bisdikian, and
L. Kaplan, “An obfuscation framework for controlling value of informa-
tion during sharing,” ser. IEEE Statistical Signal Processing Workshop
(Submitted), 2012.

[3] A. Raij, A. Ghosh, S. Kumar, and M. Srivastava, “Privacy risks emerging
from the adoption of innocuous wearable sensors in the mobile environ-
ment,” ser. CHI, 2011.

[4] H. Ahmadi, N. Pham, R. Ganti, T. Abdelzaher, S. Nath, and J. Han,
“Privacy-aware regression modeling of participatory sensing data,” ser.
SenSys, 2010.



[5] L. Sankar, S. R. Rajagopalan, and V. Poor, “A theory of utility and
privacy of data sources,” ser. ISIT, 2010.

[6] S. Chakraborty, H. Choi, and M. Srivastava, “Demystifying privacy in
sensory data: A QoI based approach,” ser. IQ2S, 2011.

[7] M. Mun, S. Hao, N. Mishra, K. Shilton, J. Burke, D. Estrin, M. Hansen,
and R. Govindan, “Personal data vaults: A locus of control for personal
data streams,” ser. ACM CoNEXT, 2010.

[8] H. Choi, S. Chakraborty, Z. M. Charbiwala, and M. B. Srivastava, “Sen-
sorsafe: a framework for privacy-preserving management of personal
sensory information,” ser. SDM, 2011.

[9] B. Fung, K. Wang, R. Chen, and P. Yu, “Privacy-preserving data
publishing: A survey on recent developments,” ACM Computing Surveys,
vol. 43, no. 4, 2010.

[10] Y. Kim, E. Ngai, and M. Srivastava, “Cooperative state estimation for
preserving privacy of user behaviors in smart grid,” SmartGridComm,
2011.

[11] S. R. Rajagopalan, L. Sankar, S. Mohajer, and H. V. Poor, “Smart meter
privacy: A utility-privacy framework,” CoRR, vol. abs/1108.2234, 2011.

[12] T. Cover and J. Thomas, Elements of information theory. New York,
NY, USA: Wiley-Interscience, 1991.

[13] C. C. Aggarwal, “On k-anonymity and the curse of dimensionality,” ser.
VLDB ’05, 2005, pp. 901–909.

[14] “Principal component analysis,” Chemometrics and Intelligent Labora-
tory Systems, vol. 2, no. 1-3, pp. 37 – 52, 1987.

[15] Pierre and Comon, “Independent component analysis, a new concept?”
Signal Processing, vol. 36, no. 3, pp. 287 – 314, 1994.

[16] S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen, and M. Srivastava,
“Using mobile phones to determine transportation modes,” ACM Trans.
Sen. Netw., March 2010.

[17] http://http://developer.android.com/guide/basics/what-is-android.html.
[18] E. Toch, J. Cranshaw, P. Hankes-Drielsma, J. Springfield, P. G. Kelley,

L. Cranor, J. Hong, and N. Sadeh, “Locaccino: a privacy-centric location
sharing application,” in Proc. of 12th ACM International Conference on
Ubiquitous Computing, 2010.

[19] A. Tootoonchian, S. Saroiu, Y. Ganjali, and A. Wolman, “Lockr: better
privacy for social networks,” in Proc. of the 5th international conference
on Emerging networking experiments and technologies, 2009.
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